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Abstract. In this paper, we explore the similar behaviour of the Yukawa and power law systems
at crystallization. This is done within the context of our density functional theory model, the
modified weighted density approximation with a static solid reference state. Some issues we probe
include the stable solid crystalline structure at equilibrium, the fractional change in density upon
crystallization, the Lindemann ratio of the equilibrium solid and the magnitude of the first peak of
the structure factor at freezing. We find many similarities between these two classes of potentials.
We also compare our findings with computer simulation and experimental results. While the
theoretical and simulation results in general agree, there exists some discrepancies between these
results for the Yukawa system and the experimental findings for colloidal suspensions.

1. Introduction

Many complex fluid systems undergo an ordering transition as density is increased [1].
Examples include opals, star polymers, soap micelles and proteins. Often these systems
comprise micelles, macroion particles or polymers, and their interaction energies can be
characterized as soft sphere repulsions. Two important soft sphere interaction potentials are
the Yukawa and power law (or inversenth power) models. The Yukawa potential for charged
particles of valenceZ is given by:

U = 0e−λr/a

r/a
(1)

where0 is the coupling parameter= (Ze)2/εa whereZ is the valence,e is the electron
charge,ε is the dielectric constant of the medium anda = ρ−1/3 is the average interparticle
distance at a densityρ. The 1/r electrostatic repulsion is screened, and thus has an exponential
cutoff determined byλ = κa whereκ−1 is the Debye screening length determined by the ionic
strength of the medium [2].

The power law potential:

U = 4ε
(σ
r

)n
(2)

wheren can vary from∞ for the short-range hard sphere system to one for the long-range
one-component plasma (OCP) has been used to describe metallic liquids [3–5], Lennard-
Jones systems at high temperatures [6] and sometimes serves as the repulsive reference state
of perturbation theories [7, 8].
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Despite their different mathematical forms, the Yukawa and power law systems both
exhibit many similar qualitative behaviours at crystallization. Both fluids freeze into face-
centred cubic (FCC) solids for short-range, harder (largeκ or n) potentials, but body-centred
cubic (BCC) solids for longer-range, softer (smallκ or n) potentials. The fractional change
upon freezing is comparable for both systems and decreases as the repulsion softens. The
Lindemann parameter, a measure of the vibrations present in a solid, is roughly constant
across the different ranges and hardnesses within each system at the melting point.

In this short paper, we will explore some of the similarities between the two systems,
focusing on the structural properties at crystallization, such as the equilibrium solid structure,
the magnitude of the density change and the values of the Lindemann parameter. We will
discuss these aspects within the context of our density functional theory model which will be
briefly summarized in the next section.

2. Density functional theory of crystallization

The density functional theory formalism we employ is our modified weighted density
approximation (MWDA) with a static solid reference state. This model has been described
before [9–11] and therefore only a very brief summary will be given here. The reader is
urged to consult previous papers on its background and its relationship with the basic modified
weighted density approximation [9, 12, 13].

In density functional theory, the total Helmholtz free energy is taken to be a functional of
the local densityρ(r) and is generally decomposed into ideal and excess components:

F [ρ] = Fideal [ρ] + Fexcess [ρ] (3)

with the ideal component known exactly:

Fideal [ρ] = kT
∫

drρ(r){ln[33ρ(r)] − 1} (4)

wherek is the Boltzmann constant and3 is the thermal de Broglie wavelength. The excess
free energy is approximated by taking into account both the uniform liquid, as well as the
perfectly ordered static solid. In this manner, it is hoped that the equilibrium solid, whose
structure lies in between these two extremes, will be well modelled. This is done by writing
the excess free energy

Fexcess [ρ] = Nf (ρ̄) (5)

as a product of the local excess free energy of the fluid phase,f (ρ̄), at a weighted, or coarse-
grained, density andN , the number of particles. This weighted density,ρ̄, corresponds to the
liquid density that accurately models asolid with densityρs .

The solid is modelled with a Gaussian distribution around lattice positionsRi :

(ρ̄) =
(α
π

)3/2∑
Ri

exp(−α|r −Ri |2). (6)

The localization parameter,α, varies from 0 for the uniform fluid phase to∞ for the perfectly
ordered static solid. Standard relationships from liquid state theory provide a simple algebraic
relationship for the weighted density:

ρ̄(ρs, α) = ρs
(

1− 1

2βf ′(ρ̄)

∑
k 6=0

exp(−k2/2α)c(k; ρ̄)
)

(7)

whereβ = 1/kT is the inverse temperature andc(k; ρ) is the fourier component of the liquid
two-particle direct correlation function. This is evaluated by solving the Ornstein–Zernike
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equation with the perturbative hypernetted chain (PHNC) equation closure of Kang and Ree
[14], which is accurate for power law potentials to moderately high densities. More information
about the PHNC equation can be found in [14].

Failures in the density functional theories arise from the inability to accurately model solid
phase correlations with a liquid. We choose to alter the correlations in the effective liquid by
moderating the indirect correlations in the Ornstein–Zernike equation used for the effective
liquid through a new weighted densitŷρ via

c(r12; ρ) = h(r12; ρ)− ρ̂
∫
c(r13; ρ)h(r23; ρ) dr3 (8)

where ρ̂ is given in terms of the weighted densities for the perfectly ordered solid that is
predicted by equation (7),̄ρ∞, and its actual value,̄ρstatic:

ρ̂

ρ̄
= ρs − ρ̄∞
ρs − ρ̄static . (9)

Equation (7) is then solved iteratively and self-consistently for the weighted density, and the
free energies can be calculated as a function of the localization parameterα. At each solid
density, a minimum in the total free energy curve for a nonzeroα value corresponds to a
stable solid in the MWDA theory. A variation of the static solid reference state MWDA model
involves taking into account the Einstein frequencies of the highly ordered solid to ensure that
the free energies approach the exact Madelung values in a logical way in the highα limit [11].

3. Structural properties of soft spheres

The phase diagrams for the Yukawa and power law systems found via our density functional
theory model are shown in figure 1. The variables used to describe the Yukawa system are
T ∗ = kT /0 andλ = κa. We note that this reduced temperature can be re-expressed in terms
of the Bjerrum lengthlb = e2/εkT , asT ∗ = Z−2(a/ lb), such that it represents the product
of the particle charge and the interparticle spacing relative to the charge separation in the
system. The power law exponent,n, and a composite variable,X = 26/nρσ 3(ε/kT )3/n/21/2,
combine temperature and density to determine the power law phase diagram. While exact
quantitative comparisons between the two different systems are not possible, bothλ andn can
be viewed as hardness–softness parameters, whileT ∗ andX contain the reduced temperatures
and densities. As can be seen in figure 1, both systems possess a fluid phase at high temperatures
or low densities (highT ∗ or lowX), an FCC solid phase at low temperatures and largeλ or n
and a BCC solid phase at low temperatures and smallλ orn. The triple point occurs at roughly
λ ∼ 5.4 andn ∼ 5.7, corresponding toT ∗ ∼ 4× 10−4 andX ∼ 1.8 [9, 11].

We can attempt to compare the two soft sphere phase diagrams more quantitatively by
using a reduced temperature scaled on a phonon energy,T̃ = kT /ma2ω2

E , wherema2ω2
E is

the product of the mass and the squares of the interparticle spacing and Einstein frequency.
The Einstein frequency for the Yukawa system is simply related to the Debye screening length
via the harmonic approximation to the potential, orma2ω2

E = 2λ2Ut/3, whereUt is the
total lattice energy per particle for the system [15]. The phonon energy for the power law
system is also determined in the harmonic approximation from the second derivative of the
pair potential, while the reduced temperature is simply related to the power exponent and the
composite variableX, asT̃ = 24/3/Xn/3n(n+1). In figure 2, we illustrate these phase diagrams
where we note that while they are qualitatively very similar, the crystallization boundary at the
liquid–BCC–FCC triple point differs by a factor of about five.

The coexistence region in a phase diagram is very sensitive to the nature of the interaction
potential and reflects the order of the phase transition. One quantitative measure of this
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Figure 1. (a) Phase diagram of Yukawa fluid withT ∗ versus 1/λ. (b) Phase diagram of power law
fluid with X versus 1/n.

behaviour is the fractional change in density upon freezing or(ρS − ρF )/ρF , also called the
miscibility gap, whereρS andρF are the coexisting densities of the solid and fluid phases,
respectively. Interestingly, the magnitudes and trends of the fractional changes in density (or
equivalently ofX for the power law case) upon freezing are quantitatively comparable for
both classes of potentials. This is illustrated in figure 3 where fractional change in density is
plotted as a function of interaction hardness, either 1/n or 1/λ. For the power law system, the
fractional changes in density vary from less than 1% forn = 4 to over 4% forn = 12 and
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Figure 2. (a) Yukawa phase diagram with the temperature scaled on the phonon energy
T̃ = 3kT /2λ2Ut . (b) Power law phase diagram with the temperature scaled on the phonon
energyT̃ = 24/3/Xn/3n(n + 1).

12% in the hard sphere limit. Similarly, the Yukawa system yields values of less than 1% for
λ ∼ 4.5 to around 5% forλ ∼ 7. These comparable values indicate that similar structural
changes are probably occurring in both systems during the freezing process. In addition, the
decrease in the miscibility gap as the potential becomes softer and of longer range is consistent
with the prediction that this quantity should become zero in the OCP limit of isochoric freezing
[16, 17]. At the liquid–BCC–FCC triple point, the miscibility gap for the two systems differs
by a factor of two.
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Figure 3. Fractional change in density at crystallization as a function of 1/λ for the Yukawa fluid
(dashed lines) and as a function of 1/n for the power law fluid (solid line).

The Lindemann parameter is defined as the ratio of the mean squared displacement of a
particle to the nearest neighbour distance in the solid [18]. For the FCC solid, it is given by:

L =
(

3

a2
FCCα

)1/2

(10)

whereaFCC = (4/ρ)1/3 is the FCC lattice constant andα is the Gaussian order parameter
defined in equation (6) above. For the BCC solid, the Lindemann parameter is:

L =
(

2

a2
BCCα

)1/2

(11)

whereaBCC = (2/ρ)1/3 is the BCC lattice constant. For the power law potentials, we find
Lindemann parameters in the range ofL = 0.13 toL = 0.14 for all n [9]. For the Yukawa
potentials, the value is larger, aroundL = 0.22 toL = 0.23 [11], but still roughly constant
for all λ values studied. The empirical Lindemann rule states that a solid will melt when the
Lindemann parameter reaches a value ofL = 0.10 [18]. Although we are studying the freezing
transition, the estimates for the Lindemann parameter for soft spheres are larger than that im-
plied by the rule. This is also true, however, for the hard sphere [19] and Lennard-Jones systems
[20, 21]. On the other hand, the Lindemann parameter is highly sensitive to the solid density
through the lattice constant and small errors in the coexisting densities are magnified inL.

Like the Lindemann rule for melting, the empirical Hansen–Verlet rule is often used to
predict the onset of crystallization. Specifically, the rule states that crystallization will occur
for a system when the first peak of its structure factor reaches 2.85 in magnitude [21–23].
The structure factor is related to the Fourier component of the direct correlation function in
equation (7) via

S(k) = 1

1− ρc(k) . (12)
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Figure 4. (a) Structure factor for the Yukawa fluid atT ∗ = 1.3× 10−4 andλ = 6.2. (b) Structure
factor for then = 6 power law fluid atX = 1.65.

Hence, a greater structure factor leads to a greaterc(k) value and a lower weighted density in
equation (7), providing a greater possibility that a solid phase can be stabilized. The structure
factors generated by the PHNC integral equation for then = 6 power law and the Yukawa
λ = 6.2 (T ∗ = 1.3× 10−4) fluids at their predicted crystallization densities into FCC solids
are shown in figure 4. As can be seen, the first peak has a magnitude of slightly over 2.8
for the n = 6 power law fluid atX = 1.65. This is very close to the Hansen–Verlet rule
value, especially considering the fact that computer simulations yield a range of crystallization
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densities for this system fromX = 1.63 toX = 1.66 [24, 25]. As a comparison, Kang and
Ree report a first peak magnitude of 2.89 for then = 6 fluid at crystallization [14]. For the
Yukawa fluid, however, the value of the first peak of the structure factor we find is nearly
3.0 for T ∗ = 1.3× 10−4 and a density of 0.0087, in excess of the value predicted by the
Hansen-Verlet rule. Furthermore, our MWDA model underpredicts the coexisting densities;
computer simulations indicate the true crystallization density is around 0.01 [15, 26]. Thus, at
that density, the first peak of the structure factor would exceed three.

4. Other theories and experiments

In general, our results for the fluid–FCC and fluid–BCC transitions agree with computer
simulations for both the power law [24, 25, 27–30] and Yukawa [15, 26, 31, 32] systems. In
addition, our Yukawa phase diagram is qualitatively consistent with experimental studies on
colloidal systems, and quantitatively close if the appropriate rescaling of charges is performed
[33]. Errors in the fluid–solid coexisting densities compared with simulation studies follow
the similar pattern of being greater as the potential becomes softer. For example, our errors
in the power law system range from 3–4% forn = 12 to 8% and 12% for then = 4 FCC
and BCC transitions, respectively [9]. Similarly, the errors inλ for the Yukawa system range
from 2% forλ ∼ 7 to 10–17% forλ ∼ 4. In all of the numbers above, the smaller errors are
incurred when the Einstein vibrations are taken into account [11].

One recurring theme in our MWDA studies is the underprediction of coexisting densities
compared with computer simulations for softer systems, especially in the Yukawa case,
resulting in a greater area of solid stability in the phase diagram. While the computer simulation
studies in the power law system were performed until crystallization occurred, the Yukawa
fluid–solid transition line in the computer simulation study of Robbins, Kremer and Grest was
determined by setting a constant Lindemann ratio ofL = 0.19 [15, 26]. This assumption is
not consistent with the power law simulation results, which predict varying Lindemann ratios
of L = 0.14 forn = 12 toL = 0.18 forn = 4. A larger Lindemann constant would predict,
ceteris paribus, lower coexisting densities and a greater range of solid stability.

This conclusion for the Yukawa system is supported by the Hansen–Verlet rule. While
both the Lindemann and Hansen–Verlet rules should be taken as empirical and not absolute
criteria for melting or freezing behaviour, the larger deviations of the Yukawa system again
indicate that perhaps the region of solid stability is greater than that previously thought. Indeed,
the large Hansen–Verlet first peak values we find are not unusual for the Yukawa system and
in fact smaller than those found by some other investigators. Robbinset al find many Yukawa
systems with structure factor first peak values of three or greater [15].

The miscibility gaps, or fractional changes in densities upon crystallization, that we find
agree well with computer simulation studies for the power law case [24, 25, 27–30]. While
the Yukawa density jumps generally agree with computer simulation studies [31, 32] and a
more detailed study by Graf and Lowen [33], there is often substantial disagreement with
experimental results. In a study of highly charged polystyrene latex crystallizing into a FCC
solid, fractional density changes of around 0.76 are found [34-35]. These values are an order of
magnitude greater than would be expected for the Yukawa system and could provide evidence
of van der Waals instabilities in charged colloidal systems [36, 37]. An earlier work by Hachisu
et alalso finds a broad coexistence region, with the solid phase being 1.2 to 1.4 times as dense
as the fluid phase [38]. This translates into a fractional change in density of around 0.17 to
0.29, still a factor of at least three too large for any simple Yukawa freezing model.

In summary, while there is no general rule for the position of the liquid–solid phase
boundary, nor the liquid–BCC–FCC triple point, some interesting comparisons between
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various soft sphere models can be made. The Lindemann parameter at the melting point and
the height of the first peak of the crystallization liquid structure factor provide some insights
into the nature of the structures near the freezing transition. The miscibility gap or density
jump upon crystallization is another sensitive measure of phase behaviour and may indicate
the inadequacy of some soft sphere potentials to model complex fluids.
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